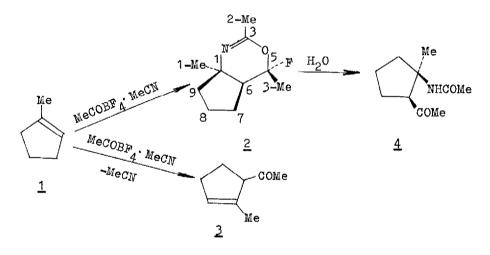

STEREOSPECIFIC SYN-ACYLAMIDATION OF OLEFINS

I.D.Gridnev , A.V.Buevich , N.M.Sergeyev , E.S.Balenkova* . Department of Chemistry , Moscow State University , Moscow , 119899 , USSR .

Abstract; Acylamidation of 1-methylcyclopentene by acetyl boronfluoride - acetonitrile complex proceeds stereospecifically with syn-addition.


Stereochemistry of the addition of carbenium ions to carbon-carbon double bonds has been scarcely studied.¹ High anti-stereospecifity is known in intramolecular biomimetic cyclisations.² Electrophilic alkylation of olefines by diarylchloromethanes in the presence of ZnCl₂ leads to mixtures of stereoisomers, although anti-addition proceeds in most cases.¹

The reaction of acylamidation of olefins by acylium salt-nitrile complexes is a new example of electrophylic additions of C-electrophiles to carbon-carbon double bonds. This reaction leads to products of conjugated addition - corresponding 6-fluoro-5,6-dihydro-1,3-oxazines and N-acyl- β -aminoketones.^{3,4}

 $R^{1} = R^{2} = CH_{3}$; $R^{1} = Ph$, $R^{2} = H$; $R^{1} = cyclo-(CH_{2})_{3}$, $R^{2} = H$; $R^{1} + R^{2} = (CH_{2})_{3}$. R = Alk; R' = Alk, Ph, $CH_{2}Cl$. We now report on the stereospecifity of acylamidation, illustrated by syn-acylamidation of 1-methylcyclopentene <u>1</u>.

Interaction between the acetyl boronfluoride-acetonitrile complex and 1-methylcyclopentene <u>1</u> yielded cis-5-fluoro-1,3,5-trimethyl-2-aza-4-oxacis-bicyclo [4.3.0] non-2-ene <u>2</u> (66%). A small amount of 2-methyl-3-acetylcyclopentene <u>3</u> (17%) was separated from the reaction mixture. Hydrolysis of fluorooxazine <u>2</u> yields quantitatively Z-1-methyl-1-N-acetylamino-2-acetylcyclopentane <u>4</u>:

Configurations of the compounds 2 and 4 were determined by NMR spectroscopy. Analysis of ¹H NMR spectra at 360 MHz of protons 1-H and 7-H of compound 4 was performed by using the total line shape approach and the NMRCON program.⁵ The reduced spin systems 1-H,2-H,3-H and 7-H,6-H,5-H,4-H were applied for the analysis of subspectra of 1-H and 7-H protons,respectively. The analysis allowed us to obtain the following proton-proton coupling constants: 8.46 (0.05), 8.94 (0.05) Hz (vicinal) for 1-H wiyh R-factor of 5.4%, and 4.68 (0.04), 8.26 (0.04) Hz (vicinal), -12.71 (0.04) Hz (geminal) for 7-H with R-factor of 5.5%. Unfortunately, the data on vicinal couplings for 1-H and 7-H protons were not sufficient to obtain any strict conclusion about the cinfiguration of 4. For the determination of structure of 4 NOE experiments⁶ were used (Fig. 1). The values of NOE $\gamma_{2-H}(1-H)$ are comparable with $\eta_{6-H}(1-H)$ and $\eta_{1-Me}(1-H)$ which corresponds to the cis, cis-configuration of 1-H,6-H and 1-Me. The presence of NOE $\gamma_{NH}(7-H)$ (1.6%) and the absence of $\gamma_{1-Me}(7-H)$ confirms the suggested cis-structure of 4.

Hydrolysis of $\frac{2}{2}$ to $\frac{4}{4}$ does not affect 5-C,6-C and 1-C,N bonds formed in the addition. Thus, the compound $\frac{2}{2}$ is also cis-isomer. Analysis of spectrum of proton 1-H of $\frac{2}{2}$ using the four-spin system approximation 1-H,2-H, 3-H,F with R-factor equal to 9.3% led to two vicinal ¹H, ¹H coupling constants 9.71 (0.03) and 9.10 (0.03) Hz and one vicinal 1 H, 19 F coupling constant 5.68 (0.03) Hz. The latter value allows us to exlude the aa-conformation of 6-C,1-H and 5-C,F bonds, as the corresponding 3 J(H,F) values are about 40 Hz.⁷ The NOE values of $\eta_{1-\text{Me}}(1-\text{H})$ (1.6%) and $\eta_{3-\text{Me}}(1-\text{H})$ (0.0%) are indicative of a cis-configuration of 6-C,1-H and 1-C,1-Me bonds and a trans-configuration of 6-C,1-H and 5-C,3-Me bonds. The cis-structure of 2 proves syn-acylamidation of 1-methylcyclopentene 1.

The 13 C, 19 F coupling constants were also measured in 13 C NMR spectrum of 2. The 4 J(1-Me,F) coupling constant was found to be 7.2 Hz while the 3 J(1-C,F) coupling constant was near zero. This data does not agree with the data on 13 C, 19 F couplings in fluorinated cyclohexanes.⁸ However, it is unlikely that there is a stereochemical analogy between cyclohexane and oxazine rings. Similar unexpected 13 C, 19 F coupling constants through three and four bonds were previously observed in oxazine derivatives.⁴ It should be noted also that a long-range 5 J(H,F) coupling constant exists between fluorine and protons in 1-Me group in 2.

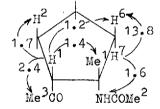
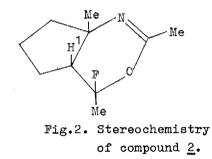



Fig.1.NOE data for compound <u>4</u>.

Thus, the formation of fluorooxazine 2 is a stereospecific process with syn-addition to the double bond. No other isomers were observed in the NMR of the crude reaction product.

Stereospecific syn-acylamidation of 1-methylcyclopentene can be used in the stereocontroled synthesis of cyclopentane derivatives.

Acylamidation of 1-methylcyclopentene and hydrolysis of compound $\underline{2}$ were performed in accordance with general procedures as described.⁴ Compounds $\underline{2}$ and $\underline{3}$ were separated by vacuum distillation.

The ¹H NMR spectra of $\underline{2}$ and $\underline{4}$ were measured on a Bruker AM-360 spectrometer at 360.13 MHz resonance frequency. The NOE values were measured using the NOE difference mode. Spectral parameters used are as follows: 7.5 s presaturation time, 4.5 s aquisition time, 30 s pulse delay, 128 (4 x 32) number of transients.

Structures of the compounds obtained are in accordance with the data

of IR- and mass-spectroscopy and have satisfactory elemental analysis. cis-5-fluoro-1,3,5-trimethyl-2-aza-4-oxa-cis-bicyclo [4.3.0] non-2-ene 2: b.p. 78°C (7 mm), n_D²⁰ 1.4550. ^TH MMR data (360 MHz in CDCl₃, S ppm): 1.39 (1-Me, d, ⁵J(H,F) = 1.5 Hz), 1.55 (3-Me, d, ³J(H,F) = 19.0 Hz), 1.39-1.88 (3CH₂, m), 2.02 (2-Me, s), 2.17 (1-H, dt, ³J(1-H,F) = 5.68 Hz; ³J(1-H,H) = 9.71, 9.10 Hz). ¹³C NWR data (90 MHz in CDCl₃, S ppm): 151.82 (3-C), 111.26 (5-C, d, ¹J(5-C,F) = 218.2 Hz), 60.75 (1-C), 46.31 (6-C, d, ²J(6-C,F) = 23.9 Hz), 42.29 (9-C), 28.04 (7-C, d, ³J(7-C,F) = 8.3 Hz), 27.05 (1-Me, d, ⁴J(1-Me,F) = 7.2 Hz), 24.56 (3-Me, d, ²J(3-Me,F) = 28.8 Hz), 21.24 (8-C), 20.49 (2-Me).

Z-1-methyl-1-N-acetylamino-2-acetylcyclopentane <u>4</u>. ¹H NMR data (360 MHz in CDCl₃, δ ppm): 1.40 (1-Me, s), 1.45 (6-H, m), 1.60-1.82 (3-H,4-H,5-H, m), 1.82 (2-Me, s), 1.90 (2-H, m), 2.16 (3-Me,s), 2.50 (7-H, ddd, ²J(7-H,6-H) = -12.91 Hz, ³J = 8.26, 4.68 Hz), 2.89 (1-H, t, ³J(1-H,H) = 8.46, 8.94 Hz), 6.65 (NH, br.s).

2-methyl-3-acetylcyclopentene 3: b.p. 42°C (7 mm), n_D^{20} 1.4732. ¹H NMR data (360 MHz in CDCl₃, S_{ppm}): 1.69 (Me, br.s), 2.11 (MeCO, s), 2.30-2.50 (2CH₂, m), 3.39 (CH, br.t), 5.58 (CH=, m).

References:

- 1. Pock, R.; Mayr, H.; Rubow, M.; Wilhelm, E. J.Am.Chem.Soc., 1986, 108, 7767.
- 2. Johnson, W.S. Angew.Chem., 1976, 88, 33.
- 3. Shastin, A.V.; Balenkova, E.S. Zh.Org.Khim., 1984, 20, 1357.
- 4. Gridnev, I.D.; Shastin, A.V.; Balenkova, E.S. Zh.Org.Khim., 1987, 23, 1546.
- 5. a) Heinzer, J. J. Magn. Res., 1977, <u>26</u>, 301.
 - b) Torocheshnikov, V.N.; Buevich, A.V.; Bolkunov, I.A.; Chertkov, V.A.; Mstislavsky, V.I.; Shakhatuni, A.G.; Chlopkov, V.N.; Dyomin, Yu.M.; Sergeyev, N.M. Abstracts of IXth Ampere Summer School, Novosibirsk, 1987,221.
- Sanders, J.K.M.; Mersh, J.D. Prog.Nucl.Magn.Reson.Spectrosc., edited by J.W. Emsley, J. Feeney and L.H.Sutclffe, Pergamon Press, Oxford, <u>15</u>, 1982,353.
- 7. Hall, L.D.; Jones D.L. Can.J.Chem., 1973, 51, 2914.
- 8. Subbotin, O.A.; Sergeyev, N.M. J.Am.Chem.Soc., 1975, 97, 1080.

(Received in UK 22 February 1989)